469 research outputs found

    Hadron production in relativistic nuclear collisions : Thermal hadron source or hadronizing quark-gluon plasma?

    Get PDF
    Measured hadron yields from relativistic nuclear collisions can be equally well understood in two physically distinct models, namely a static thermal hadronic source vs. a time-dependent, nonequilibrium hadronization o a quark-gluon plasma droplet. Due to the time-dependent particle evapora- tion o the hadronic surface in the latter approach the hadron ratios change (by factors of <H 5) in time. Final particle yields reflect time averages over the actual thermodynamic properties of the system at a certain stage of the evolution. Calculated hadron, strangelet and (anti-)cluster yields as well as freeze-out times are presented for di erent systems. Due to strangeness distillation the system moves rapidly out of the T, µq plane into the µs-sector. Classif.: 25.75.Dw, 12.38.Mh, 24.85.+

    Phase transition of a finite quark-gluon plasma

    Get PDF
    The deconfinement transition region between hadronic matter and quark-gluon plasma is studied for finite volumes. Assuming simple model equations of state and a first order phase transition, we find that fluctuations in finite volumes hinder a sharp separation between the two phases around the critical temperature, leading to a rounding of the phase transition. For reaction volumes expected in heavy ion experiments, the softening of the equation of state is reduced considerably. This is especially true when the requirement of exact color-singletness is included in the QGP equation of state

    Hadron and hadron cluster production in a hydrodynamical model including particle evaporation

    Get PDF
    We discuss the evolution of the mixed phase at RHIC and SPS within boostinvariant hydrodynamics. In addition to the hydrodynamical expansion, we also consider evaporation of particles o the surface of the fluid. The back-reaction of this evaporation process on the dynamics of the fluid shortens the lifetime of the mixed phase. In our model this lifetime of the mixed phase is d 12 fm/c in Au + Au at RHIC and d 6.5 fm/c in Pb + Pb at SPS, even in the limit of vanishing transverse expansion velocity. Strong separation of strangeness occurs, especially in events (or at rapidities) with relatively high initial net baryon and strangeness number, enhancing the multiplicity of MEMOs (multiply strange nuclear clusters). If antiquarks and antibaryons reach saturation in the course of the pure QGP or mixed phase, we find that at RHIC the ratio of antideuterons to deuterons may exceed 0.3 and even 4He/4He > 0.1. In S + Au at SPS we find only N/N H 0.1. Due to fluctuations, at RHIC even negative baryon number at midrapidity is possible in individual events, so that the antibaryon and antibaryon-cluster yields exceed those of the corresponding baryons and clusters

    Dynamics of strangeness production and strange matter formation

    Get PDF
    We want to draw the attention to the dynamics of a (finite) hadronizing quark matter drop. Strange and antistrange quarks do not hadronize at the same time for a baryon-rich system1. Both the hadronic and the quark matter phases enter the strange sector fs 6= 0 of the phase diagram almost immediately, which has up to now been neglected in almost all calculations of the time evolution of the system. Therefore it seems questionable, whether final particle yields reflect the actual thermodynamic properties of the system at a certain stage of the evolution. We put special interest on the possible formation of exotic states, namely strangelets (multistrange quark clusters). They may exist as (meta-)stable exotic isomers of nuclear matter 2. It was speculated that strange matter might exist also as metastable exotic multi-strange (baryonic) objects (MEMO s 3). The possible creation in heavy ion collisions of long-lived remnants of the quark-gluon-plasma, cooled and charged up with strangeness by the emission of pions and kaons, was proposed in 1,4,5. Strangelets can serve as signatures for the creation of a quark gluon plasma. Currently, both at the BNL-AGS and at the CERN-SPS experiments are carried out to search for MEMO s and strangelets, e. g. by the E864, E878 and the NA52 collaborations9

    Baryon stopping and strangeness production in ultra-relativistic heavy ion collisions

    Get PDF
    The stopping behaviour of baryons in massive heavy ion collisions ( s k 10AGeV) is investigated within di erent microscopic models. At SPS-energies the predictions range from full stopping to virtually total transparency. Experimental data are indicating strong stopping. The initial baryo-chemical potentials and temperatures at collider energies and their impact on the formation probability of strange baryon clusters and strangelets are discussed

    Superheavy nuclei in a chiral hadronic model

    Get PDF
    Superheavy nuclei are investigated in a nonlinear chiral SU(3)-model. The proton number Z=120 and neutron numbers of N=172, 184 and 198 are predicted to be magic. The charge distributions and alpha-decay chains hint towards a hollow stucture

    Nuclei, superheavy nuclei, and hypermatter in a chiral SU(3) model

    Get PDF
    A model based on chiral SU(3)-symmetry in nonlinear realisation is used for the investigation of nuclei, superheavy nuclei, hypernuclei and multistrange nuclear objects (so called MEMOs). The model works very well in the case of nuclei and hypernuclei with one Lambda-particle and rules out MEMOs. Basic observables which are known for nuclei and hypernuclei are reproduced satisfactorily. The model predicts Z=120 and N=172, 184 and 198 as the next shell closures in the region of superheavy nuclei. The calculations have been performed in self-consistent relativistic mean field approximation assuming spherical symmetry. The parameters were adapted to known nuclei
    • …
    corecore